Deep Learning
New TensorFlow Release 1.13.0
January 28, 2019
8 min read

Here is an overview of TensorFlow's latest release 1.13.0.
tf.lite and source code is now under tensorflow/lite rather than tensorflow/contrib/lite.tf.constant.gain argument of convolutional orthogonal initializers (convolutional_delta_orthogonal, convolutional_orthogonal_1D, convolutional_orthogonal_2D, convolutional_orthogonal_3D) have consistent behavior with the tf.initializers.orthogonal initializer, i.e. scale the output l2-norm by gainand NOT by sqrt(gain). (Note that these functions are currently in tf.contrib which is not guaranteed backward compatible).tf.acos, tf.acosh, tf.add, tf.as_string, tf.asin, tf.asinh, tf.atan, tf.atan2, tf.atanh, tf.cos, tf.cosh, tf.equal, tf.exp,tf.floor, tf.greater, tf.greater_equal, tf.less, tf.less_equal, tf.log, tf.logp1,tf.logical_and, tf.logical_not, tf.logical_or, tf.maximum, tf.minimum, tf.not_equal, tf.sin,tf.sinh, tf.tan`tf.data.Dataset.shard.saved_model.loader.load which is replaced by saved_model.load and saved_model.main_op, which will be replaced by saved_model.main_op in V2.Variable.count_up_to and tf.count_up_to in favor of Dataset.range.confusion_matrix op as tf.math.confusion_matrix instead of tf.train.confusion_matrix.tf.dtypes. endpoint for every constant in dtypes.py; moving endpoints in versions.py to corresponding endpoints in tf.sysconfig. and tf.version.; moving all constants under tf.saved_model submodules to tf.saved_model module. New endpoints are added in V1 and V2 but existing endpoint removals are only applied in V2.tf.register_tensor_conversion_function.tf.contrib.saved_model.save_keras_model.LinearOperator.matmul now returns a new LinearOperator.ignore_unknown argument to parse_values which suppresses ValueError for unknown hyperparameter types. Such * Add tf.linalg.matvec convenience function.tf.einsum()raises ValueError for unsupported equations like "ii->".tf.signal.dct and tf.signal.idct.round_mode to QuantizeAndDequantizeV2 op to select rounding algorithm.unicode_encode, unicode_decode, unicode_decode_with_offsets, unicode_split, unicode_split_with_offset, and unicode_transcode ops. Amongst other things, this Op adds the ability to encode, decode, and transcode a variety of input text encoding formats into the main Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE)SpaceToDepth supports uint8 data type.tf.nn.safe_embedding_lookup_sparse, tf.nn.sampled_softmax and tf.nn.nce_loss.tf.spectral into tf.signal for TensorFlow 2.0.tensorflow/contrib/lite to tensorflow/lite.tf.contrib:rate argument, keep_prob is deprecated.tf.contrib.estimator were changed to tf.estimator:tf.contrib.estimator.BaselineEstimator with tf.estimator.BaselineEstimatortf.contrib.estimator.DNNLinearCombinedEstimator with tf.estimator.DNNLinearCombinedEstimatortf.contrib.estimator.DNNEstimator with tf.estimator.DNNEstimatortf.contrib.estimator.LinearEstimator with tf.estimator.LinearEstimatortf.contrib.estimator.InMemoryEvaluatorHook and tf.estimator.experimental.InMemoryEvaluatorHook`.tf.contrib.estimator.make_stop_at_checkpoint_step_hook with tf.estimator.experimental.make_stop_at_checkpoint_step_hook.tf.contrib.signal to tf.signal (preserving aliases in tf.contrib.signal).tf.contrib.estimator.export_all_saved_models and related should switch to tf.estimator.Estimator.experimental_export_all_saved_models.tf.data.experimental.StatsOptions(), to configure options to collect statistics from tf.data.Dataset pipeline using dStatsAggregatord. Adds option "experimental_stats" to tf.data.Options which takes tf.data.experimental.StatsOptions object. Deprecates tf.data.experimental.set_stats_agregator.tf.data.Dataset.make_one_shot_iterator() in V1, removed it from V2, and added tf.compat.v1.data.make_one_shot_iterator()`.tf.data.Dataset.make_initializable_iterator() in V1, removed it from V2, and added tf.compat.v1.data.make_initializable_iterator().tf.data transformations.tf.data.Dataset implementers: Added tf.data.Dataset._element_structured property to replace Dataset.output_{types,shapes,classes}.EVP_MD_CTX_destroy.:android_tensorflow_lib_selective_registration* targets, use :android_tensorflow_lib_lite* targets instead.RoundToEven function to xla/client/lib/math.h.TF_XLA_DEBUG_OPTIONS_PASSTHROUGH set to "1" or "true" allows the debug options passed within an XRTCompile op to be passed directly to the XLA compilation backend. If such variable is not set (service side), only a restricted set will be passed through.
Here is an overview of TensorFlow's latest release 1.13.0.
tf.lite and source code is now under tensorflow/lite rather than tensorflow/contrib/lite.tf.constant.gain argument of convolutional orthogonal initializers (convolutional_delta_orthogonal, convolutional_orthogonal_1D, convolutional_orthogonal_2D, convolutional_orthogonal_3D) have consistent behavior with the tf.initializers.orthogonal initializer, i.e. scale the output l2-norm by gainand NOT by sqrt(gain). (Note that these functions are currently in tf.contrib which is not guaranteed backward compatible).tf.acos, tf.acosh, tf.add, tf.as_string, tf.asin, tf.asinh, tf.atan, tf.atan2, tf.atanh, tf.cos, tf.cosh, tf.equal, tf.exp,tf.floor, tf.greater, tf.greater_equal, tf.less, tf.less_equal, tf.log, tf.logp1,tf.logical_and, tf.logical_not, tf.logical_or, tf.maximum, tf.minimum, tf.not_equal, tf.sin,tf.sinh, tf.tan`tf.data.Dataset.shard.saved_model.loader.load which is replaced by saved_model.load and saved_model.main_op, which will be replaced by saved_model.main_op in V2.Variable.count_up_to and tf.count_up_to in favor of Dataset.range.confusion_matrix op as tf.math.confusion_matrix instead of tf.train.confusion_matrix.tf.dtypes. endpoint for every constant in dtypes.py; moving endpoints in versions.py to corresponding endpoints in tf.sysconfig. and tf.version.; moving all constants under tf.saved_model submodules to tf.saved_model module. New endpoints are added in V1 and V2 but existing endpoint removals are only applied in V2.tf.register_tensor_conversion_function.tf.contrib.saved_model.save_keras_model.LinearOperator.matmul now returns a new LinearOperator.ignore_unknown argument to parse_values which suppresses ValueError for unknown hyperparameter types. Such * Add tf.linalg.matvec convenience function.tf.einsum()raises ValueError for unsupported equations like "ii->".tf.signal.dct and tf.signal.idct.round_mode to QuantizeAndDequantizeV2 op to select rounding algorithm.unicode_encode, unicode_decode, unicode_decode_with_offsets, unicode_split, unicode_split_with_offset, and unicode_transcode ops. Amongst other things, this Op adds the ability to encode, decode, and transcode a variety of input text encoding formats into the main Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE)SpaceToDepth supports uint8 data type.tf.nn.safe_embedding_lookup_sparse, tf.nn.sampled_softmax and tf.nn.nce_loss.tf.spectral into tf.signal for TensorFlow 2.0.tensorflow/contrib/lite to tensorflow/lite.tf.contrib:rate argument, keep_prob is deprecated.tf.contrib.estimator were changed to tf.estimator:tf.contrib.estimator.BaselineEstimator with tf.estimator.BaselineEstimatortf.contrib.estimator.DNNLinearCombinedEstimator with tf.estimator.DNNLinearCombinedEstimatortf.contrib.estimator.DNNEstimator with tf.estimator.DNNEstimatortf.contrib.estimator.LinearEstimator with tf.estimator.LinearEstimatortf.contrib.estimator.InMemoryEvaluatorHook and tf.estimator.experimental.InMemoryEvaluatorHook`.tf.contrib.estimator.make_stop_at_checkpoint_step_hook with tf.estimator.experimental.make_stop_at_checkpoint_step_hook.tf.contrib.signal to tf.signal (preserving aliases in tf.contrib.signal).tf.contrib.estimator.export_all_saved_models and related should switch to tf.estimator.Estimator.experimental_export_all_saved_models.tf.data.experimental.StatsOptions(), to configure options to collect statistics from tf.data.Dataset pipeline using dStatsAggregatord. Adds option "experimental_stats" to tf.data.Options which takes tf.data.experimental.StatsOptions object. Deprecates tf.data.experimental.set_stats_agregator.tf.data.Dataset.make_one_shot_iterator() in V1, removed it from V2, and added tf.compat.v1.data.make_one_shot_iterator()`.tf.data.Dataset.make_initializable_iterator() in V1, removed it from V2, and added tf.compat.v1.data.make_initializable_iterator().tf.data transformations.tf.data.Dataset implementers: Added tf.data.Dataset._element_structured property to replace Dataset.output_{types,shapes,classes}.EVP_MD_CTX_destroy.:android_tensorflow_lib_selective_registration* targets, use :android_tensorflow_lib_lite* targets instead.RoundToEven function to xla/client/lib/math.h.TF_XLA_DEBUG_OPTIONS_PASSTHROUGH set to "1" or "true" allows the debug options passed within an XRTCompile op to be passed directly to the XLA compilation backend. If such variable is not set (service side), only a restricted set will be passed through.